복소함수론 학기말시험

2006. 12. 14

1 (15 pts) Evaluate the integral: $\int_{|z|=2} f(z) d z$, where $f(z)=\frac{1}{z(z-1)(z-3)}$.

2 (15 pts) Suppose that an entire function $f(z)$ satisfies

$$
|f(z)| \leq A+B|z|^{k}, \quad \forall z \in \mathbb{C}
$$

for some positive numbers A and B and for some positive integer k. Show that $f(z)$ is a polynomial of degree $\leq k$.

3 (15 pts) Suppose that f is analytic in the annulus $A=\{z: 1 \leq|z| \leq 2\}$ and $|f(z)| \leq 1$ for $|z|=1,|f(z)| \leq 4$ for $|z|=2$. Prove that $|f(z)| \leq|z|^{2}$ for all $z \in A$.
$4 \quad(30 \mathrm{pts}=15+15)$ Let $f(z)=z^{5}-\frac{1}{2} z^{4}+2 z^{3}+1$.
a) Show that $f(z)$ has five zeros in $|z|<2$.
b) Evaluate $\int_{|z|=2} \frac{z f^{\prime}(z)}{f(z)} d z$.

5 (15 pts) Let C denote the positively oriented circle $|z|=8$. Show that

$$
\frac{1}{2 \pi i} \int_{C} \frac{e^{z t}}{\sinh z} d z=1-2 \cos \pi t+2 \cos 2 \pi t
$$

$6 \quad(30 \mathrm{pts}=15+15)$
a) Find the inverse Laplace transform of $\frac{1}{s(s-2)^{2}}$. Use the residue theorem and show the convergence of the integral.
b) Using the method of Laplace transform find the solution $y(t)$ of the initial value problem:

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+4 y= \begin{cases}1, & \text { if } t>1 \\
0, & \text { if } t \leq 1\end{cases} \\
y(0)=1, \quad y^{\prime}(0)=-2
\end{gathered}
$$

7 (30 pts $=15+15)$ Let $f(z)=u(x, y)+i v(x, y)$ be an entire function such that $f^{\prime}(z) \neq 0, \quad \forall z \in \mathbb{C}$. Show that
a) The level curves of u and the level curves of v intersect perpendicularly.
b) If $h(x, y)$ is a harmonic function such that $h(x, y) \geq u(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$, and $h(0,0)=u(0,0)$, then $h=u$.

8 (15 pts) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ converges absolutely for $\operatorname{Re} z>1$.

9 (15 pts) Prove: Suppose that for each $n=1,2, \cdots, f_{n}(z)$ is analytic in a simply connected domain D, and that the sequence $\left\{f_{n}(z)\right\}$ converges to $f(z)$ uniformly in D. Then $f(z)$ is analytic.

문제 끝

총점 180 점

